If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+0.4x-0.6=0
a = 1; b = 0.4; c = -0.6;
Δ = b2-4ac
Δ = 0.42-4·1·(-0.6)
Δ = 2.56
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.4)-\sqrt{2.56}}{2*1}=\frac{-0.4-\sqrt{2.56}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.4)+\sqrt{2.56}}{2*1}=\frac{-0.4+\sqrt{2.56}}{2} $
| (3x+36)/6=6x-18)/2 | | -6x+21=4x+3 | | 1/6x+3=x/2 | | -17x-11=-133 | | 2x/5+3=7/2 | | 8*x-9=19 | | 1/6x+2=(x-3)/2 | | x5=7x-168 | | -29x^2+(2x^2-11)^2+23=0 | | -29x^2+(2x^2-11)^2=-23 | | (2x^2-11)^2-6=29(x^2-1) | | x×5=(x-24)×7 | | 1/6x+6=(x-3)/2 | | -(x-4)+2(4x-3)=5 | | -3-4x=10 | | 7(x3)=49 | | 2(x-3)-4x=2 | | 2(x-3)-4x=2 | | 5x+11=17−9x | | (8x+3)-(10x+6)=9 | | 7(4w+1)÷5=0 | | -5(2t+3)=-45 | | -7x-23=9x+121 | | 29(x+1)=x | | 29x+6=-2+31x | | 5x-7=-8+3x | | 9(x-11)=x | | 104x+4=100 | | 25x^2+(-40x^2-24x+25x+15)^2+30x-(-9)=0 | | |2x-5|=|3x+10| | | -9x+27=3x-33 | | 25x^2+(-40x^2-24x+25x+15)^2+30x=-9 |